skip to main content


Search for: All records

Creators/Authors contains: "Larour, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract. Projection of the contribution of ice sheets to sea level change as part ofthe Coupled Model Intercomparison Project Phase 6 (CMIP6) takes the formof simulations from coupled ice sheet–climate models and stand-alone icesheet models, overseen by the Ice Sheet Model Intercomparison Project forCMIP6 (ISMIP6). This paper describes the experimental setup forprocess-based sea level change projections to be performed with stand-aloneGreenland and Antarctic ice sheet models in the context of ISMIP6. TheISMIP6 protocol relies on a suite of polar atmospheric and oceanicCMIP-based forcing for ice sheet models, in order to explore the uncertaintyin projected sea level change due to future emissions scenarios, CMIPmodels, ice sheet models, and parameterizations for ice–ocean interactions.We describe here the approach taken for defining the suite of ISMIP6stand-alone ice sheet simulations, document the experimental framework andimplementation, and present an overview of the ISMIP6 forcing to beused by participating ice sheet modeling groups. 
    more » « less
  3. Abstract

    There is no consensus on how quickly the earth's ice sheets are melting due to global warming, nor on the ramifications to sea level rise. Due to its potential effects on coastal populations and global economies, sea level rise is a grave concern, making ice melt rates an important area of study. The ice‐sheet science community consists of two groups that perform related but distinct kinds of research: a data community, and a model building community. The data community characterizes past and current states of the ice sheets by assembling data from field and satellite observations. The modeling community forecasts the rate of ice‐sheet decline with computational models validated against observations. Although observational data and models depend on one another, these two groups are not well integrated. Better coordination between data collection efforts and modeling efforts is imperative if we are to improve our understanding of ice sheet loss rates. We present a new science gateway,GHub, a collaboration space for ice sheet scientists. This web‐accessible gateway will host datasets and modeling workflows, and provide access to codes that enable tool building by the ice sheet science community. Using GHub, we will collect and centralize existing datasets, creating data products that more completely catalog the ice sheets of Greenland and Antarctica. We will build workflows for model validation and uncertainty quantification, extending existing ice sheet models. Finally, we will host existing community codes, enabling scientists to build new tools utilizing them. With this new cyberinfrastructure, ice sheet scientists will gain integrated tools to quantify the rate and extent of sea level rise, benefitting human societies around the globe.

     
    more » « less
  4. null (Ed.)
    Abstract. Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution inresponse to different climate scenarios and assess the mass loss that would contribute tofuture sea level rise. However, there is currently no consensus on estimates of the future massbalance of the ice sheet, primarily because of differences in the representation of physicalprocesses, forcings employed and initial states of ice sheet models. This study presentsresults from ice flow model simulations from 13 international groups focusing on the evolutionof the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet ModelIntercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from theCoupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climatemodel results. Simulations of the Antarctic ice sheet contribution to sea level rise in responseto increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent(SLE) under Representative ConcentrationPathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment withconstant climate conditions and should therefore be added to the mass loss contribution underclimate conditions similar to present-day conditions over the same period. The simulated evolution of theWest Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighingthe increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelfcollapse, here assumed to be caused by large amounts of liquid water ponding at the surface ofice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without iceshelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, thecalibration of these melt rates based on oceanic conditions taken outside of ice shelf cavitiesand the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario basedon two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared tosimulations done under present-day conditions for the two CMIP5 forcings used and displaylimited mass gain in East Antarctica. 
    more » « less